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1 Element of set theory

Set theory is a branch of mathematic and probability theory which enables to tackle class of
problems dealing with random phenomena.

1.1 Definitions

Random phenomenon a phenomenon that has more than one possible outcome. The true
outcome is unknown until it is observed.

Sample space collection of all possible outcomes of a random phenomenon. Notation: S.

Sample point each element of the sample space. Notation: x.

Event a collection of sample points which represents a subset of the sample space. Notation:
E, E ✓ S.

These definitions are typically visualized via Venn’s diagram. Figure 1 shows a typical Venn
diagram. Observe that the rectangular shape is used for S, the oval shape for E, and the dot
for x.

1.2 Operation on Events

Union: given the events E1 and and E2, the union event, denoted with E1 [ E2, is the event
that contains all sample points in either E1 or E2. Figure 2(i).

Intersection: given the events E1 and and E2, the intersection event, denoted with E1 \E2 or
simply E1E2, is the event that contains the sample points both in E1 and E2 Figure 2(ii).

These operations obey certain properties:

Commutative property of union: E1 [ E2 = E2 [ E1.

Figure 1: Venn diagram
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Commutative property of intersection: E1E2 = E2E1.

Associative property of union: E1 [ (E2 [ E3) = (E1 [ E2) [ E3 = E1 [ E2 [ E3.

Associative property of intersection: E1(E2E3) = (E1E2)E3 = E1E2E3.

Distributive property: E1(E2 [ E3) = (E1E2) [ (E1E3) = E1E2 [ E1E3.

Observe that intersection takes precedence over union. I follows, that in the application of
the distributive property the intersection operations must be performed prior to the union
operations.

1.3 Special Events

Certain event: the event that contains all possible sample points of the sample space. Then,
the sample space S is the certain event.

Null Event: the event that contains no sample points. Notation ?.

Mutually exclusive events: the events E1 and E2 are mutually exclusive when they have no
common sample points. Then, E1E2 = ?.

Collectively exhaustive events: the events E1, E2, ..., EN are collectively exhaustive when
their union spans the entire sample space. Then, E1 [ E2 [ ... [ EN = S.

Complementary events: the complement of the event E is the event Ē contains all the sample
space that are not in in the event E. Then, EĒ = ? and E [ Ē = S, i.e. E and Ē are
mutually exclusive and collectively exhaustive.

1.4 De Morgan’s rules

Given a series of events E1, E2, ..., EN , it easy to prove the following rules:

E1 [ E2 [ ... [ EN = Ē1Ē2...ĒN , i.e.
N[

n=1

En =
N\

n=1

Ēn, (1)

Figure 2: (i) Union and (ii) Intersection Events
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and

E1E2...EN = Ē1 [ Ē2 [ ... [ ĒN , i.e.
N\

n=1

En =
N[

n=1

Ēn. (2)

2 Element of Probability theory

The probability of an event E in a sample space S, is a measure, a weight, of the likelihood of
occurrence of the event relative to other events in S. Notation: P (E|S) or P (E). Probability
theory is based on the following Kolmogorov 1 three axioms:

I. 0  P (E)  1.

II. P (S) = 1.

III. P (
SN

n=1En) =
PN

n=1 P (En), for mutually exclusive E1, E2, ..., EN .

The following results are derived based on the above axioms:

i. P (Ē) = 1� P (E).

ii. P (?) = 0.

iii. P (E1 [ E2) = P (E1) + P (E2)� P (E1E2).

Common pitfalls: when approaching for the first time probability theory, a common mistake
among students is to confuse the null event, ?, with the real number 0. Observe that 0 can be
a sample point, and an event, it follow that 0 6= ?, and P (?) 6= P (0)! Moreover, observe that
P (E) = 0 ; E = ?.

The last rule can be easily generalized for N events, i.e.

P (E1 [ E2 [ ... [ EN ) =
NX

n=1

P (En)�
NX

m=1

NX

n>m

P (EnEm) +
NX

l=1

NX

m>l

NX

n>m

P (EnEmEl)�

...+ (�1)N�1P (E1E2...EN ). (3)

Moreover based on (1) we can write

P (E1 [ E2 [ ... [ EN ) = 1� P (E1 [ E2 [ ... [ EN ) = 1� P (Ē1Ē2...ĒN ). (4)

2.1 Conditional Probability

Conditional Probability is a simple, yet very profound, concept in Probability theory. We
actually argue that this is the most important concept for this class. In fact, it sets the foundation
for a good understanding of all the lecture notes, and the basis for a gently introduction to
Bayesian statistics. Given two events E1 and E2, the conditional probability of E1 given E2,
denoted with P (E1|E2), defines the the probability of observing sample points of E1, given that

1Andrey Nikolaevich Kolmogorov ( *1903 †1987) was a Russian and Soviet mathematician who is the father
of modern Probability Theory. His contributions spans from abstract mathematics to physics. It is considered
one of the greatest minds of the 20th century
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the event E2 has occurred. This is a way of redefining the sample space, since by assuming
E2 has occurred the possible sample points are now confined within E2. By definition, the
conditional probability is defined as

P (E2|E1) =
P (E1E2)

P (E1)
, if P (E1 > 0)

= 0, if P (E1 = 0), (5)

or rearranging the last equation as:

P (E1E2) = P (E2|E1)P (E1), (6)

or by using the commutative property as

P (E1E2) = P (E1|E2)P (E2), (7)

For a set of events E1, E2, ..., EN the probability of intersection can be written in di↵erent way,
depending on the order of the conditioning, e.g.

P (E1E2...EN ) = P (EN |E1...EN�1)P (EN�1|E1...EN�2)...P (E2|E1)P (E1), (8)

= P (E1|E2...EN )P (E2|E3...EN )...P (EN�1|EN )P (EN ), (9)

In contrast to the conditional probability P (E2|E1), the unconditional probability P (E1) is
named marginal probability.

2.2 Statistical Independence

Two events E1 and E2 are statistically independent, E1 ?? E2, if

P (E2|E1) = P (E2), (10)

i.e., the occurrence or the knowledge of E2 does not a↵ect the probability of occurrence of E1.
It follows that for two statistically independent events

P (E1E2) = P (E1)P (E2). (11)

Common pitfalls: often students confuse independence with mutually exclusive. The two
notions are mathematically and conceptually very di↵erent. Mutually exclusive relates to share
sample points between two events, while statically independence relates to the probability prop-
erties expressed by (10). It is easy to show that P (E1E2) = P (E1)P (E2) () E1 ?? E2.
However, for a set of events E1, E2, ..., EN , statistically independence requires that

P
⇣
En|

\

n 6=m

Em

⌘
= P (En), (12)

i.e., the conditional probability of En given any set of remaining events must be equal to the
unconditional probability of En. Equivalently, the events are statistically independent if for any
selections of indices the joint probability of the events is equal to the product of their marginal
probabilities. For example for three events E1, E2, E3, statistically independence, E1 ?? E2 ??
E3 )

P (E1E2E3) = P (E1)P (E2)P (E3),

P (E1E2) = P (E1)P (E2),

P (E2E3) = P (E2)P (E3),

P (E3E1) = P (E3)P (E1), (13)

however, P (E1E2E3) = P (E1)P (E2)P (E3) alone ; E1 ?? E2 ?? E3.
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2.3 Theorem of Total Probability

Consider a set of mutually exclusive and collectively exhaustive events E1, E2, ...EN , i.e.
EnEm = ? and

SN
n=1En = S. Then, consider an event A, according to the theorem of to-

tal probability,

P (A) =
NX

n=1

P (A|En)P (En). (14)

The proof is given by taking in follow

P (A) = P (AE1 [AE2 [ ... [AEN )

=
NX

n=1

P (AEn) =
NX

n=1

P (A|En)P (En) (15)

Figure 4 shows a Venn diagram representation of the events. The theorem of total probability
is pivotal in risk assessment, since often it is easier to compute conditional probabilities than
marginal probabilities.

2.4 Bayes’ Theorem

Consider two events A and B. Then, considering the commutative property P (AB) =
P (A|B)P (B) = P (B|A)P (A) and re-arranging terms we can write

P (B|A) =
P (A|B)

P (A)
P (B). (16)

The last equation is known as Bayes’s2 theorem. This theorem is at the base of Bayesian
statistics. It’s significance lies in the fact that the probability of event A appears in the uncon-
ditional form P (A) on the right, and in its conditional form P (B|A) on the left side. It follows,

Figure 3: Representation of total probability

2Thomas Bayes ( *1701 †1761) was a British Presbyterian minister, statistician, and philosopher. It is curious
to know that Mr Bayes never published his work on Bayes’ theorem. His notes were revised and published by
the Welsh philosopher and mathematician Richard Price after Bayes death. However, it must be said that the
great French mathematician Pierre-Simon Laplace ( *1749 †1827) pioneered and popularised the modern Bayesian
probability.
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that Bayes’ Theorem sets the foundation for updating the probability of an event A when the
observation of event B is made.

Given a set of mutually exclusive and collectively exhaustive events E1, E2, ...EN , we can write

P (En|A) =
P (A|En)

P (A)
P (En), (17)

and by using the total probability theorem (23)

P (En|A) =
P (A|En)PN

n=1 P (A|En)P (En)
P (En). (18)

All rules of probability apply to conditional probabilities, provided a proper resize of the sample
space is made. For example:

P (E1 [ E2|A) = P (E1|A) + P (E2|A)� P (E1E2|A) (19)

P (E1E2|A) = P (E1|E2A)P (E2|A) = P (E2|E1A)P (E1|A), (20)

and given a set of mutually exclusive and collectively exhaustive events E1, E2, ...EN , we can
rewrite (23)

P (B|A) =
NX

n=1

P (B|EnA)P (En|A). (21)

Example I

Suppose that we would like to know the probability of failing of the Bay Bridge, Figure 4, which
connects the city of Oakland with the city of San Francisco. The Bay bridge is a series system
composed of two spans. The east span connects the city of Oakland with Yerba Buena island,
and the west span connects Yerba Buena island with the city of San Francisco. The sample space
of the intensity measures of the earthquake are defined as Sim = {IV, V I, V III,X}, where IV is
a low intensity earthquake, V I a medium intensity earthquake, V III is a strong earthquake, and
X is a devastating earthquake. Seismologists and earthquake engineers compute the probability
of occurrence of such events. For this case, the values3are reported in Table 1.

Let’s denote with FS the system failure event, FW is the west span failure event, and FE is
the east span failure event. Structural engineers compute the probability of failure of structures
conditional to a level of hazard, i.e. FW |IM , and FE |IM . These values3 are reported in Table
2.

The Bay Bridge system fails (i.e. FS) if the east span fails (i.e. FE) OR the west span fails (i.e.
FW ). Then, we can write this event as

P (FS) = P (FW [ FE) = P (FW ) + P (FE)� P (FWFE). (22)

We can compute P (FW ), P (FE), and P (FEFW ), by the total probability theorem. In fact, the
earthquake intensities represent a collection of mutually exclusive and collectively exhaustive
events. Then, for example, we can write P (FW ) as

P (FW ) =
NX

n=1

P (FW |IMn)P (IMn). (23)

In the same way, we can use the total probability theory to compute FE and FEFW .

3Numbers reported here are purely academic.
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Problems

i Compute P (FW ), P (FE), and P (FEFW ), and P (FS).

ii Are the events FW |IM and FE |IM statistically independent?

iii Are the events FW and FE statistically independent? Which conclusions can you draw?

Suppose that we know that the Bay Bridge system has failed; however, we do not know which
of the two spans has failed. Given this information we would like to update the probability that
the west span has failed. Then, we can use the Bayes’ theorem as

P (FW |FW [ FE) =
P (FW [ FE |FW )

P (FW [ FE)
P (FW ), (24)

it should be clear that P (FW [ FE |FW ) = 1 since if we know that the west span has failed the
system is surely failed. Then we can write

P (FW |FW [ FE) =
1

P (FW [ FE)
P (FW ), (25)

and finally solve the problem with the values from the previous problems.

Problems

i Compute P (FW |FW [ FE), P (FE |FW [ FE). Which conclusions can you draw?

ii What is the probability that the west component ALONE was the cause of failure?

iii Given that the Bay Bridge system failed, what is the probability that IM = V III (i.e.
P (IM = V III|FW [ FE))?

iv Given that the Bay Bridge system failed, what is the most likely earthquake intensity? Is
it an “intuitive” result? Which conclusions can you draw?

Figure 4: Bay Bridge. Source: Wikipedia.
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P (IM = IV ) P (IM = V I) P (IM = V III) P (IM = X)
0.8 0.15 0.045 0.005

Table 1: IM probabilities

IM P (FW |IM = im) P (FE |IM = im) P (FWFE |IM = im)
IV 1.00E�4 1.00E�4 1.00E�8
V I 5.00E�3 1.00E�3 5.00E�6

V III 8.00E�2 5.00E�3 4.00E�4
X 2.00E�1 5.00E�2 1.00E�2

Table 2: Conditional probabilities of failure
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